
ZeRO-Offload: Democratizing Billion-Scale 
Model Training

Jie Ren∗ , Samyam Rajbhandari† , Reza Yazdani Aminabadi† , Olatunji Ruwase† Shuangyan Yang∗ , 
Minjia Zhang† , Dong Li∗ , Yuxiong He†

Presenter: Yueming Yuan, Ananth Madan



Background and Motivation



Large Models are Large

● Training large models consumes a lot of memory
○ Model states: parameters, gradients, optimizer states (i.e. momentum and variance in Adam)
○ Residual states: activations, temporary buffers, fragmented memory (unusable)

● Model states are the primary memory bottleneck in training
○ For Adam and other optimizers, optimizer state is in fp32
○ Overall, model state is 16M bytes with Adam, where M is the number of parameters

■ 2M bytes per parameter and gradient, and 4M bytes per parameter, variance, and 
momentum

● High resource requirement -> Limited accessibility of large model 
training



Existing work & why ZeRO-offload



Scaling out model training: Accessibility challenge

Existing distributed training technologies: 

● Pipeline parallelism
● Model parallelism
● ZeRO

Distribute the model states across multiple GPU devices

Require enough GPU devices that many institutions can not access



Scaling up model training

● Activation checkpointing
○ Not applicable for large model states

● Compression
○ Accuracy loss

● Using external memory, e.g. CPU



Solution: Heterogeneous DL training

Exploit CPU resources to reduce GPU resources requirement

Existing work:

● Target activation memory bottleneck, not for attention-based model
● Exploit CPU memory, but not CPU compute
● Mostly designed for single GPU



Solution: Heterogeneous DL training

Exploit CPU resources to reduce GPU resources requirement

Existing work:

● Target activation memory bottleneck, not for attention-based model
● Exploit CPU memory, but not CPU compute
● Mostly designed for single GPU
● L2L

Need a better heterogeneous strategy to satisfying efficiency, scalability 
and usability for large model training



Key Idea & Designs
Part 1. Strategy choice
Part 2. Training Schedule
Part 3. CPU optimizations



Key Design

Offload the Optimizer states and gradients to the CPU memory, 
compute parameter updates at CPU

● Reduce 8x memory
● Lightweight CPU computation 

/communication burden

GPU - 2M CPU - 2M CPU - 12M

offloaded



Part 1. How to choose the strategy?

Goal: design an optimal CPU offloading strategy, offload part of the 
model states and computations to CPU, to reduce the GPU 
memory requirement, while keeping the

● Efficiency
○ Avoid orders of magnitude performance reduction

● Scalability
○ Good performance on multi GPUs



Dataflow graph of mixed-precision training

Model states:
● Parameter 16
● Gradient 16
● Parameter 32 + 

momentum 32 + 
variance 32

Computations:
● FWD
● BWD
● Param update
● float2half

M: model size



Dataflow graph of mixed-precision training

Need to offload part of the 
model states and computations 
⬇
Find the best two-way 
partitioning of the graph



Design Considerations

1. Minimize CPU computations
● CPU is multiple orders of magnitude 

slower than GPU
● General compute complexity of a model: 

O(MB). Can only offload O(M) 
computations: norms, weight updates, …



Design Considerations

1. Minimize CPU computations
● CPU is multiple orders of magnitude 

slower than GPU
● General compute complexity of a model: 

O(MB). Can only offload O(M) 
computations: norms, weight updates, …

● FWD-BWD must be assigned on the 
GPU.

1.FWD & BWD



Design Considerations

2. Minimize GPU/CPU communication
● PCI-E is orders of magnitude slower than 

GPU memory bandwidth
● The minimum communication volume of 

the partition is 4M.



Design Considerations

2. Minimize GPU/CPU communication
● PCI-E is orders of magnitude slower than 

GPU memory bandwidth
● The minimum communication volume of 

the partition is 4M.
● The fp32 model states must be 

co-located with the Param Update and 
the float2half computations.

2.Param update



Design Considerations

1. Minimize CPU computations
● FWD-BWD must be assigned on the GPU.

2. Minimize GPU/CPU communication
● The fp32 model states must be co-located with the Param Update and 

the float2half computations.
3. Maximize Memory savings



The unique and optimal offload strategy



Part 2. ZeRO-offload Schedule - Single GPU

Gradients are transferred to CPU for each parameter/in small groups 
right after they are computed



ZeRO-offload Schedule - Multi-GPU, with ZeRO-2

CPU resources work in parallel to compute the weight update



Part 3. Optimized CPU execution - CPU Optimizer

CPU Adam optimizer

● SIMD vector instruction
● Loop unrolling
● OMP multithreading

Tiled CPU-to-GPU 16FP parameter copy



Optimized CPU execution - DPU

One-step Delayed Parameter Update (DPU)

● Overlap the CPU computation with the GPU computation
● Do not apply in the first N-1 steps, apply from step N to avoid hurting 

convergence



Evaluation



Questions to Answer

● How does ZeRO-Offload trainable model size and throughput scale on a 
single GPU/node?

● How does ZeRO-Offload throughput scale to 128 GPUs
● How does the DPU and improved CPU-Adam affect throughput and model 

convergence?



Setup

● Single DGX-2 node vs. 8 connected DGX-2 nodes
○ Single- vs. multi-GPU training throughput evaluation

● GPT-2-like Transformer models
○ Additionally, BERT for evaluating convergent analysis

● Tested against the following frameworks
○ PyTorch DDP
○ Megatron
○ SwapAdvisor
○ L2L
○ ZeRO-2



Evaluation (Model Size and Throughput)



Multi-GPU (Single DGX-2) Training Throughput



Throughput Scalability to 128 GPUs



CPU-Adam



Model Convergence with DPU



Holistic Analysis vs. PyTorch



Strengths, Weaknesses, and Takeaways

Strengths

● Usability
○ Extremely easy to use: No code refactoring required

■ DeepSpeed library
○ Flexible configuration allows you to selectively turn off and on optimizations

● Scalability
○ Scalable GPU training via CPU offloading

■ Demonstrable improvements over regular ZeRO for larger batch sizes and 
model sizes

■ Helps with increasing throughput in environments without so many GPUs



Strengths, Weaknesses, and Takeaways

Weaknesses/Other Directions

● ZeRO-3 is not supported (at least in paper…)
● For even larger models, parameters memory become the new bottleneck
● The CPU parameter updating is too slow for a large model size
● Difficult to overlap the CPU computation and communication if the model size is too 

large

Takeaways

● Great step forward for making large model training more accessible offloading in 
heterogeneous systems

● Can we go bigger…?


